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A B S T R A C T

A study of the trion and biexciton in a nanowire (NW) in the framework of the effective-mass model is presented. We consider the formation of trions and biexcitons
under the action of both the lateral confinement and the localization potential. The analytical expressions for the binding energy and eigenfunctions of the trion and
biexciton are obtained and expressed by means of matrix elements of the effective one-dimensional cusp-type Coulomb potentials whose parameters are determined
self-consistently by employing eigenfunctions of the confined electron and hole states. Our calculations for the ZnO/ZnMgO, CdSe/ZnS and CdSe/CdS core/shell
cylindrical shaped NWs show that the trion and biexciton binding energy in NWs are size-dependent and for the same input parameters the biexciton binding energy
in NWs is always larger than the binding energy of the trion. The trion and biexciton remain stable in CdSe/ZnS NW with the increase of the dielectric shell, while in
ZnO/ZnMgO NW they become unstable when the surrounding dielectric shell exceeds 2.5 nm and 2 nm for each, respectively. The associative ionization of biexciton
antibonding states into trion bonding states that leads to the formation of trions is studied. Based on the results for size dependence of biexciton binding energy and
probability associative ionization an optimal radius for optoelectronic application NW is suggested.

1. Introduction

The optical properties of quantum nanostructures have been in-
creasingly investigated over the past decades. This is connected to the
fact that the system characteristics that govern optical response, such as
electronic level structure, oscillator strength, Coulomb interaction be-
tween charge carriers and electron-phonon interaction dramatically
changes with size variation at nanometer scale [1,2]. Consequently, the
issue of tuning of optical response by means of size and shape control
has become important. Excitons and excitonic complexes in quantum
nanostructures have been one of the hot topics since the early days of
quantum nanostructures [3]. The reason for this is that on the one hand
excitons are main intrinsic emitters in short wavelength region and
therefore, optimization of excitonic emission is very important for
emitting device fabrication. On the other hand, the investigation of
excitons and their complexes can provide deep insight into the pecu-
liarities of inter particle interaction at low dimensions. Multi-particle
states, like single particle ones, are strongly affected by space and di-
electric confinement [4]. Therefore, the new possibilities of controlling
their characteristics appear in quantum nanostructures.

In the late 1950s Lampert [5] predicted the existence of charged and
neutral exciton complexes formed when an electron in a conduction
band or a hole in a valence band is bound to a neutral exciton or two
single excitons are correlated. This idea gave rise to many publications

in the 60s and the 70s in bulk materials (see, for example, the works
[6–8] and citations therein). The binding energies of the exciton com-
plexes are very small in bulk at room temperature, but they are sub-
stantially enhanced in structures of reduced dimensionality. Theoretical
calculations performed at the end of the 1980s [9] predicted a con-
siderable (up to tenfold) increase of the trion binding energy in
quantum well heterostructures compared with bulk. Trions were first
observed in quantum wells (QW) [10] in 1993 and shortly thereafter in
GaAs-AlGaAs quantum wells [11–13].

In the last two decades these complexes have been the subject of an
extensive theoretical and experimental studies in QW [14–21],
quantum dots (QD) [22–28], nanotubes [29–42] and quantum wires
[43–55]. We cited these articles, but the recent literature on the subject
is not limited by them. The reduced dimensionality considerably in-
creases the binding energy of trions and biexcitons and, thus facilitates
the formation of these exciton complexes in semiconductor quantum
wells, quantum wires with different confinement geometry, nanotubes
and quantum dots.

Whilst in bulk materials excitonic characteristics are defined by
dielectric constant and effective masses of electrons and holes, in
quantum nanostructures, new controlling parameters, such as size,
shape and material distribution profile become crucial. According to
numerous investigations the main trend that has been revealed is that
with size reduction binding energy of excitons and excitonic complexes,
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as well as their decay probability are strongly enhanced [56–58], which
seems very promising, and is crucial for applications in optoelectronics
[59], such as light-emitting diodes [60], photovoltaics [61], and pho-
totransistors [62], to cite just a few.

However, the situation is not always so straightforward; e.g. in Ref.
[64] it was reported that with decreasing size biexciton binding energy
was dropped to zero in InAs/AlAs quantum dots. Much more challen-
ging is the fact, that, with size reduction, some nonradiative processes
also become more intensive. In nanocrystal quantum dots/rods, non-
radiative carrier losses are dominated by surface trapping and multi-
particle Auger relaxation [65]. Nonradiative processes connected to
surface traps increase with the size reduction due to the increase in
surface-to-volume ratio. However, these processes can be suppressed by
using core/shell structures for passivating surface traps. Auger re-
combination is a nonradiative process in which the electron–hole re-
combination energy is transferred to a third particle [66]. Auger re-
combination has a relatively low efficiency in bulk semiconductors.
However, Auger decay is greatly enhanced in quantum-confined sys-
tems, which is mainly connected to the increase of particle wave
functions overlap and breakdown of translational symmetry [63].
Auger recombination is effective at high excitation regime when
number of excited carrier pairs exceeds one per quantum dot [67] and
when multi-exciton effects are intensive as well. This is why trions and
biexcitons still are subjects of extensive investigations [68–72].

Recent studies of one-dimensional (1D) nanostructures such as na-
notubes [35,40–42] and nanowires [46,51–53,55,73] show that the
trion and biexciton binding energy depend on the electron to hole mass
ratio and the geometric characteristics of a nanostructure. Although the
exciton complexes like trions in solid state physics are very similar to
the few-body bound systems in atomic and nuclear physics there is a
major difference related to band effects, which make the effective
masses of the electrons and holes smaller than the bare electron mass,
and screening effects, resulting from the host lattice, which make the
Coulomb force much weaker than in atomic systems.

The majority of recent research is conducted with core/shell NWs in
which the emitting core is overcoated with a thin layer of a semi-
conductor material that has much higher band gap which enhances
carrier localization and suppresses Auger recombination. In group II–IV
materials ZnO/ZnMgO, CdSe/ZnS and CdSe/CdS are prime examples of
such core/shell NWs which are the subject of the present study.

In this paper, we present a theoretical approach to study a trion and
a biexciton in a NW in the framework of the effective-mass model. We
consider the formation of trions and biexciton under the action of both
the lateral confinement and the localization potential. Our approach
allows us to obtain analytical expressions for the binding energy and
eigenfunctions of the trion and biexciton. The corresponding energies
are expressed by means of matrix elements of effective one-dimensional
cusp-type Coulomb potentials whose parameters are determined self-
consistently by employing the same eigenfunctions of the confined
electron and hole states. We calculated the exciton, trion and biexciton
binding energies in ZnO/ZnMgO, CdSe/ZnS and CdSe/CdS core/shell
NWs of cylindrical shape and their dependence on NW radius. Because
of high exciton binding energy ZnO/ZnMgO, CdSe/ZnS and CdSe/CdS
are a very good candidates for achieving efficient excitonic laser action
at room temperature and Auger recombination is expected to be re-
duced for this class of materials [74] as well as for elongated core/shell
structures [75]. Having chosen the system where Auger recombination
is expected to be low, we aimed to find size dependence of trion and
biexciton binding energies in order to define size/composition optimal
for effective lasing. We also investigated the process of autoionization
during which the biexciton transforms to a trion. We propose that as
numbers of photo generated electrons and holes are the same, this

process should be the main source of generation of trions, which in its
turn are suspected to be the main reason of photoluminescence inter-
mediacy and efficiency drop [76].

The paper is organized in the following way. In Sec. 2, we provide
the theoretical model for a trion and biexciton in a core/shell NW and
obtain single-particle wavefunctions for confined electrons and holes,
which allows us to find the effective electron-hole, hole-hole and
electron-electron interactions in 1D. Using these interactions in the
framework of the effective-mass model we solve the one-dimensional
Schrödinger equations within the fixed center approximation for an
exciton, trion and biexciton and obtain the analytical expressions for
the binding energies and wavefunctions for these exciton complexes in
Subsections 2.3, 2.4, and 2.5, respectively. In Sec. 3 the results of cal-
culations and discussion are presented. Conclusions follow in Sec. 4.

2. Theoretical formalism

2.1. Setting the model

We consider a formation of trions and biexcitons in a core/shell
nanowire. The system represents a cylindrical core of radius a, sur-
rounded by a cylindrical shell of thickness b. The trion and biexciton are
a three- and four-body system and the corresponding Schrödinger
equations cannot be solved analytically, while a solution of the Faddeev
equations for a few-body system widely used in nuclear and atomic
physics is a challenging task, which involves complex numerical com-
putations. To overcome this difficulty, for the core/shell NW we con-
sider the theoretical model that is based on two assumptions:

∙ Coulomb interaction is assumed to be decisive only along the NW
axis and in radial direction motion of carriers is governed by the
strong lateral confinement perpendicular to the NW.

∙ Heavy holes on the average, move appreciably more slowly than the
electrons, which allows one to use the Born-Oppenheimer approx-
imation and solve Schrödinger equation for fixed interhole dis-
tances.

To solve the problem of a positive trion (two holes and one electron)
and biexciton (two holes and two electrons) laterally confined in a
quantum NW we adopt the Born-Oppenheimer approximation, very
well known in physics of molecules [77]. The Born-Oppenheimer
approximation [78] accounts for a difference in masses of light and
heavy particles and assumes that the light particles can respond almost
instantly to heavy particles' displacement [79]. The best example for a
such system is a hydrogen molecular ion +H2 and a hydrogen molecule
H 2, which as a positively charged trion and biexciton consist from two
heavy and one light and two heavy and two light particles, respectively
[77,80]. Therefore, instead of solving the three-body Schr ödinger
equation for all particle simultaneously one can treat heavy particles as
motionless and solve the Schrödinger equation for a definite position of
heavy particles, taking the interparticle separation as a parameter R.
After that calculations are carried out for different R.

The application of the Born-Oppenheimer approximation naturally
separates the calculation into the following steps: due to the strong
lateral confinement perpendicular to the NW one first calculates the
two-dimensional (2D) energies and wave functions of the electron and
hole, while neglecting the Coulomb interaction between them.
Therefore, the fast transverse motions of charge carriers remain in-
dependent of each other. Next, using these wave functions of transverse
electron and hole motion, one can average the three-dimensional (3D)
Coulomb potential to a 1D Coulomb interaction between the charge
carriers along the NW. Finally, after an appropriate modeling of these
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potentials by functions which depend on the distance between the
charge carriers, one should find energies and wavefunctions for a trion
or a biexciton for each fixed position of the holes by solving the cor-
responding reduced 1D Schrödinger equations.

Let us assume that the conduction and highest valence bands are
decoupled, which is a reasonable approximation for the below con-
sidered type of a NW because of the large direct band gap of the ZnO/
ZnMgO, CdSe/ZnS and CdSe/CdS materials. The full Hamiltonian for a
three- or four-particle excitonic complexes in a confinement within the
single-band effective-mass approximation can be written as
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where ri and mi are the position and effective mass of the i-th particle,
correspondingly, N is a number of particle that is equal to 3 and 4 for
the trion and biexciton, respectively, and U(ri) are confinement po-
tentials for each of particles. For example, one can consider a lateral
confinement potential shown in Fig. 1a for a core/shell NW. In the
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in case of the biexciton.
Below we consider the formation of trions and biexcitons in a core/

shell NW. The system represents a cylindrical core of radius a, sur-
rounded by a shell of thickness b, as schematically shown in Fig. 1b. To
find the binding energies, calculate the energy spectra of trions and
biexcitons and find eigenfunctions needed for calculation their optical

properties, we must solve the Schrödinger equation with Hamiltonian
(1). We assume that the lateral confinement is strong, so that only the
lowest subband for the electron and hole is occupied. This assumption
allows a reduction of the Schrödinger equation to an effective one-di-
mensional form. Assuming strong lateral confinement, we are allowed
to separate the z motion from the lateral motion in the xy plane. In
other words, we assume that the Coulomb interaction does not affect
the xy motion of the particles, so that we can separate the electron and
hole motion confined in the lateral direction from the electron-hole
relative motion. Therefore, the envelope function for a trion or biex-
citon can be approximated as

… = …z z zr r r( , , , ) ( , , , ) ( , ),N N
i

i i i1 2 1 2
(4)

where Φ(z1, z2, …, zN) is the envelope function describing the electron-
hole relative motion in the trion (N=3) or biexciton (N=4) in the z
axis along the NW and ψe(ρe, φe) (ψh(ρh, φh)) is the radial single-particle
wave functions for an electron (hole) for the lateral motion in the xy
plane, which due to the axial symmetry of the system depend on cy-
lindrical coordinates for each of particles. Here and below the Cartesian
coordinates, wavefunctions and masses of the electron (hole) are de-
noted with the subscript e and h, respectively.

By averaging the Schrödinger equation with Hamiltonian (1) by
using function (4) after the separation of variables we obtain
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which is the Schrödinger equation of single-particle states for electrons
and holes confined in a NW and the following Hamiltonian
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in the case of positively charged trion, while in the case of biexciton the

Fig. 1. (a) A lateral confinement potential. (b) Schematic of the two 1D excitons sharing the same electron in a nanowire to form a positive trion. Schematically the
electron in the field of two one-dimensional cusp-type Coulomb potentials of the holes is shown in Fig. 1b.
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corresponding Hamiltonian reads
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In Hamiltonians (6) and (7) Veh
eff , Vhh

eff and Vee
eff are effective electron-

hole, hole-hole and electron-electron interactions that are defined in
Appendix A. Conceptually a positively charged 1D trion can be con-
sidered as two ground-state 1D excitons sharing the same electron to
form a positive trion state and 1D biexciton as two 1D excitons that are
sharing the same two interacting electrons to form a biexciton bound
state. A schematic of this concept for the trion is depicted in Fig. 1b.

Thus, finding the eigenfunctions and eigenenergies for the trion and
biexciton for the Hamiltonian (1) is reduced to the solution of the
Schrödinger equation for single-particle states of the electrons and the
hole confined in a NW (5) and a solution of the Schrödinger equation
with the Hamiltonian (6) for the trion and Hamiltonian (7) for the
biexciton with the effective potentials (A.1) - (A.3). The effective po-
tentials (A.1) - (A.3) between charged particles are free from the sin-
gularity of the bare Coulomb potential at the origin as a result of
averaging with the lateral subband wave functions. However, these
effective potentials can be given only numerically. Following Ogawa
and Takagahara [22] the effective potentials (A.1) - (A.3) for 1D
semiconductors usually are modeled by effective one-dimensional cusp-
type Coulomb potentials approximated by the first order rational
function

+
A

z Z( )0
, where z is interparticle distance in z-direction and A

and Z0 are fitting parameters. These parameters are defined by wave
functions ψe(h)(ρ, φ) that are the solutions of (5), which in its turn,
depend on a NW geometry, particles' effective masses, and band offsets
Ue(h). Consequently, they vary with the NW radius and are different for
the electron-hole, hole-hole and electron-electron interactions (see
Appendix A).

2.2. Single-particle states for confined electrons and holes

Let us solve the Schrödinger equation (5) for single-particle states of
the electron and the hole confined in a core-shell NW. We assume that
confinement potentials for the electron and hole depicted in Fig. 1a
have a stepped well shape, are different and have an axial symmetry
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where Ue h( )
0 is the conduction (valence) band offset between core and

shell materials and, obviously, it is different for electrons and holes due
to the different bands that leads to their different masses. Proceeding
from the cylindrical symmetry the solution of Eq. (5) should have the
form
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The solutions of this equation are Bessel functions: within the core we
have the Bessel function of first kind Jn, which is finite at ρ=0, while
within the shell the solution is a linear combination of the Bessel
functions of second type Kn and In
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The C, C1 and C2 coefficients in (11) are defined from the condition of
continuity and smoothness of the wavefunction at the boundary, and
from the condition of its normality: CJn(ka)= C1Kn(ϰa) + C2In(ϰa),
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= = =
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2 Consequently, the energy of radial motion

of electrons (holes) are defined by means of the boundary condition at
ρ= a + b: C1Kn(ϰ(a + b)) + C2In(ϰ(a + b))= 0. Having found k, we
can define the Ee(h) energy and the wave functions of a confined non-
interacting electron and hole, respectively. The solutions ψe(h)(ρ, φ) of a
single-particle radial Schrödinger equation (5) are used to average
three-dimensional potentials in (A.1) - (A.3). As a result, one-dimen-
sional effective potentials are obtained for the electron-hole, hole-hole
and electron-electron interactions that then are parameterized in the
form

+
A

z Z( )0
as shown in Appendix A.

2.3. Exciton in a nanowire

In the ideal limit the 1D electron-hole system with a perfect con-
finement, can be treated as a “one-dimensional hydrogen-atom” pro-
blem in the framework of the effective-mass approximation. As a first
step let us consider the interacting electron and hole in a 1D NW and
model an exciton by using an effective one-dimensional cusp-type
Coulomb potential. Following [22] one can write the equation that
describes relative motion of the electron and hole bound with the cusp-
type Coulomb interaction in one-dimensional radially confined NW in
the form

+
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µ
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Here μ is the reduced effective mass of electron-hole pair, Aeh, Z0eh are
the fitting parameters for the effective electron-hole one-dimensional
cusp-type Coulomb potentials obtained through the parametrization of
Eqs. (A.1), z= ze− zh is the relative electron-hole motion coordinate,
EX is the binding energy of the electron and hole that form the exciton
and ΦX(z) is the corresponding wavefunction. Eq. (13) has the same
form as the equation for one-dimensional hydrogen atom studied by
Loudon [81]. One can introduce the following notations
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and reduce (13) to the Whittaker's equation
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The solution of (15) is the Whittaker function Wξ, ± 1∕2(x),
ζ(x)=Wξ, ± 1∕2(x), as shown in Refs. [81,82]. The value of ξ which
defines EX and ΦX(z), is determined by the boundary condition stating
that for even states the derivative of wave function at z=0must turn to
zero
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2.4. Positive trion in a nanowire

Following [77] for positively charged trions bound by the effective
one-dimensional cusp-type Coulomb potentials the Hamiltonian (6) in
the Born-Oppenheimer approximation can be written as

=
+ + +
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+
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d
dz
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2 2

2
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where μ is electron-hole reduced mass, R is distance between two holes,
which are assumed to be motionless at z= ± R∕2, and Aeh, Z0eh and
Ahh, Z0hh are the fitting parameters for the effective electron-hole and
hole-hole one-dimensional cusp-type Coulomb potentials obtained
through the parametrization of Eqs. (A.1) and (A.2), correspondingly.
Schematically the electron in the field of two 1D cusp-type Coulomb
potentials is shown in Fig. 1b.

For solution of the Schrödinger equation for the trion with
Hamiltonian (17) we use the method of linear combination of atomic
orbitals (LCAO) [77]. In the framework of the LCAO method the ei-
genfunction of trion is presented as a linear combination of single ex-
citon wave functions centred at z= ± R∕2

= +c c ,X X1 21 2 (18)

where X1 and X2 are the solutions of the Schrödinger equation
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In Eq. (19) EX1 and EX2 are the energy of the exciton when the hole is
localized at R∕2 and -R∕2, respectively. Close to the hole located at R∕2
the wavefunction X1 will resemble a single electron orbital, while the
wavefunction X2 will represent the electron orbital near the hole lo-
cated at − R∕2. Thus, the linear combination (18) represents both
cases. The states X1 and X2 are degenerate due to symmetry. Fol-
lowing the well-known perturbation theory for the degenerate states
[83], one can obtain the normalized wavefunctions for the first two
states

=
±

±± ( )S
1

2(1 )
,X X1 2

(20)

where =S X X1 2 is an overlap integral. The wavefunction Φ+ cor-
responds to the localization of the electron density between holes
(bonding orbital) and the accumulation of electron density in the in-
terhole region is simulated due to the constructive interference that
takes place between the two electron waves centred on neighboring
holes, while the wavefunction Φ− has a node between the holes (an-
tibonding orbital). Trion energies corresponding to these states are:
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where the expressions for J and K, which parametrically depend on R,
are given in Appendix B. The last term in (21) and (22) is the energy of
interaction between two holes
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Thus, to find the dependence of the trion energy on interhole separation
R one needs to evaluate the relevant matrix elements J and K and
calculate the interaction energy between two holes (23). The maximum
of the positive value of + ±

+E E R E R( ) ( )X hh X correspond to binding
energy of the positively charged trion. However, this approach is not
applicable for consideration of a negatively charged trion.

2.5. Biexciton in a nanowire

Now let us consider a 1D biexciton for which the model of the hy-
drogen molecule H2 is used. Following [80] for the biexciton, where
two electrons and two holes are bound via the effective one-dimen-
sional cusp-type Coulomb potentials, the Hamiltonian (7) in the Born-
Oppenheimer approximation can be written as
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where =z z z| |12 1 2 and Aee and Z0ee are the fitting parameters for the
effective one-dimensional cusp-type Coulomb potentials in the Ha-
miltonian (7) for the electron-electron interaction obtained from (A.3),
while the other fitting parameters are already defined in Subsec. 2.4.
The wave function of the biexciton can be constructed by means of
single exciton wave functions again. If the electron–electron and hole-
hole interactions are ignored one can use z z( ) ( )X X1 21 2 as an approx-
imation for the biexciton wavefunction. However, the symmetry of the
wavefunction has to be taken into account. Following [80] we construct
symmetric and antisymmetric wave functions coinciding to antiparallel
(singlet state) and parallel orientation (triplet state) of spins of electrons
as:

=
±

±± z z
S

z z z z( , ) 1
2(1 )

[( ( ) ( ) ( ) ( )].X X X X1 2 1 2 2 11 2 1 2
(25)

The energies of bonding symmetric and antibonding antisymmetric
states in the first order perturbation theory are found as mean values of
(24). The corresponding energies for these states are:

= ++ +
+

E R E( ) 2 ,XX X
Q P

S1 2 (26)

= +E R E( ) 2 ,XX X
Q P

S1 2 (27)

where Q and P parametrically depend on R and are given in Appendix
C.

The binding energy of biexciton is the maximum value of
2EX− EXX(R).

3. Results of calculations and discussion

Our calculations are based on the assumption that the Coulomb
interaction strength in the radial direction is much weaker than the
lateral confinement effect and the Coulomb interaction is significant
only along the z-axis and is presented by the 1D cusp-type Coulomb
potentials for the electron-hole, hole-hole and electron-electron inter-
actions. The Born-Oppenheimer approximation successfully used in the
physics of molecules assumes that the ratio of mass of the atomic nuclei
and electrons is large enough. In the case of positively charged trions

Table 1
Input parameters for ZnO/ZnMgO and CdSe/ZnS NWs. me and me are the mass
of the electron and hole, respectively, Ue

0 and Uh
0 are the lateral confinement

potentials for a conduction and valence band offset between core and shell
materials, respectively, and ε is dielectric constant. m0 is the mass of free
electron.

me∕m0 mh∕m0 U ,e
0 eV U ,h

0 eV ɛ

ZnO/ZnMgO 0.24 [85] 0.86 [85] 0.37 [86] 0.31 [86] 8.13
CdSe/ZnS 0.13 [84] 0.45 [84] 1.2 [88] 0.7 [88] 10.2
CdSe/CdS 0.13 0.45 0.30 [88] 0.44 [88] 10.2
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and biexcitons the ratio of hole-electron mass is much less than the
proton-electron mass ratio, which makes questionable not only the
validity of the Born-Oppenheimer approximation, but also the existence
of bound states. In Ref. [84] it is stated that exciton bound to neutral/
ionized donor for which models of +H2 and H2 are also used, the binding
energy sharply increases when the hole-electron mass ratio varies from
1 to 3. For II–VI semiconductors, where the mass ratio mh∕me varies
between 3 and 5, for calculation of trion and biexciton states the Born-
Oppenheimer approximation is often used [94]. Even in the case when
mh=me satisfactory values are obtained for the binding energy of the
two- and three-dimensional biexcitons [95].

We calculate the trion and biexciton binding energies in ZnO/
ZnMgO, CdSe/ZnS and CdSe/CdS core/shell quantum structures of a
cylindrical shape. The calculations are performed for the set of para-
meters listed in Table 1. Here the effect of the differences in the ef-
fective masses in core and shell material is not taken into account. For
ZnO/ZnMgO and CdSe/CdS structures this difference is not significant.
In CdSe/ZnS structure the barrier height is very high, penetration of
carriers into the barrier is not substantial. Because of high exciton
binding energy ZnO/ZnMgO is a very good candidate for achieving
efficient excitonic laser action at room temperature. ZnO is a wide
bandgap (3.4 eV) material [87], has sufficient hole-electron mass ratio.
The most important part of the ZnO/ZnMgO band structure, which is
the bottom of the conduction band and the top of the valence bands in
the vicinity of the Γ−point, can be well described within the effective-
mass approximation [96].

CdSe/ZnS and CdSe/CdS are also promising direct-bandgap II–VI
semiconductors active in the visible range, with potential applications
in electronics and optoelectronics [89]. Nanostructures based on CdSe
are one of the most extensively investigated low dimensional semi-
conductor structures with potential applications towards field-effect
transistors, photodetectors, and light-emitting diodes [90]. The
bandgap of CdSe is lower than that of ZnO - 1.74 eV [91]. Exciton
binding energy in bulk CdSe also is significantly lower than that in bulk
ZnO – 0.13 eV [92]. However, investigations show possibility of effec-
tive control/enhancement of stability of excitonic complexes in na-
nostructures [92,93]. Let us mention that when the quantum confined
physical system, such as a quantum wire, approaches the nanometric
range, a reduction of the static dielectric constant becomes important
for small radii of the wire. A reduced static dielectric constant increases
Coulomb interaction energy between electrons and holes. A polariza-
tion of the Coulomb interaction arising from the dielectric mismatch,
can be find by numerically integrating the Poisson equation [97]. A
momentum dependent dielectric function ɛ(q) is especially suitable for
situations that involve dielectric discontinuity, which requires solving a
full electrostatic boundary value problem. Calculations become more
simple if one instead ɛ(q) uses a constant, but a wire radius-dependent
effective dielectric constant ɛ(a) [98]. Thus, the effective dielectric
constants are expected to change as a function of radius because of the
reduced screening. In our calculations we neglect this effect and use the
bulk dielectric constants when calculating the Coulomb interaction in
Eqs. (2) and (3). In Ref. [99] was studied the effect of the polarization
discontinuity between interfaces such as ZnO/ZnMgO. Our model does
not include this effect. However, role of this effect for trions/biexcitons
binding energy requires detailed consideration which is out of the scope
of this article.

As a first step we calculate the effective interactions (A.1)–(A.3) by
averaging over the electron ψe(ρe, φe) and hole ψh(ρh, φh) wavefunctions,
which reduce the 3D Coulomb potential to a one-dimensional potential
that depends only on the coordinate of two particle relative motion. The
corresponding computational modeling allows one to find the numer-
ical values of the fitting parameters A and Z0 for the 1D cusp-type

Coulomb potentials. Once these constants are known one can use them
as the input parameters and evaluate J and K given in (B.4) and (B.5),
and using Eqs. (21) and (21) find the trion energy for given interhole
separation R. In the case of biexciton using the same matrix elements J
and K given in (B.4) and (B.5), and the matrix elements J and K given
in (C.6) and (C.7), one can find Q and P defined in (C.8) and determine
the biexciton energy by means of Eqs. (26) and (27).

We study the dependence of the trion and biexciton binding energy
on the interhole distance, the NW radius and the thickness of the sur-
rounding dielectric shell using Eqs. (21) and (22), and (26) and (27),
respectively. When the trion or biexciton energies in ZnO/ZnMgO,
CdSe/ZnS and CdSe/CdS as a function of interhole distance exhibit
minimums at the particular interhole distances and for the particular
NW radius it can be a signature of possible existence of the bound state
of the trion or biexciton. If the minimum lies below the energy of a
separated exciton and hole, this indicates the formation of the trion,
while if the minimum energy is below the energy of two separated
excitons, it is an indication of the biexciton formation.

The results of calculations for the trion energies in ZnO/ZnMgO and
CdSe/ZnS NWs as a function of interhole distance R are presented in
Fig. 2. The calculation is performed for different radii of a NW. The
energy curves vary with the interhole distance. The upper branches of
curves correspond to the antibonding orbital for the antisymmetric
state, while the lower branches of curves correspond to the bonding
orbital for the symmetric state. The steep rise dependence in energy at
R < 1.5 nm for both ZnO/ZnMgO and CdSe/ZnS NWs is largely due to
the increase in the hole-hole potential energy as the two holes are
brought close together. When a curve exhibits minimum and its energy
is below the energy of a separated exciton and a hole one can confirm
the existence of a bound trion. For all values of a NW radius the typical
behavior of a symmetric bonding state for ZnO/ZnMgO NW is observed
with minimum at some particular hole-hole distance, while one can see
the minimum of the energy for the antisymmetric state only for the NW
with the smallest radius a=1.0 nm. The minimums are not sharp,
nevertheless bound states of trions exist. In the case of CdSe/ZnS the
curves for the trion energies as a function of interhole distance exhibit
minimum for the symmetric bonding states as well as for the anti-
bonding antisymmetric states. The minimums are pronounced for an-
tisymmetric states for the radius of NW a=1.0 nm and a=1.5 nm,
however, there is no minimum in the antibonding state for the other
considered values of NW radii.

Let us now present results of calculations for the biexciton in ZnO/
ZnMgO and CdSe/ZnS NWs. Using Eqs. (26) and (27) the dependence of
biexciton energies on interhole distance for different NW radii are
calculated and presented in Fig. 3. The lower branches of curves cor-
respond to the bonding symmetric state, while the upper branches of
curves correspond to the antibonding antisymmetric state. In the anti-
symmetric state when the holes approach one another the energy in-
creases monotonically for all considered radii of the NW. It follows from
Fig. 3 for the symmetric state when the holes approach one another the
energies are lowered down to a particular distance R after which the
energies rise steeply for when the distance is further decreased. The
minimums of energy for the symmetric state are sharply pronounced
and lie below the energy of two separated excitons for all considered
NW radii. The minimums are much deeper for ZnO/ZnMgO NW and
occur when R > 2nm, while in the case of CdSe/ZnS the minimums
appear at about 1.5 < R < 2.5 nm. The confinement potentials for the
electrons and holes in ZnO/ZnMgO and CdSe/ZnS NWs are significantly
different. The comparison of Figs. 2a, b and 3a, b illustrates the effect of
the confinement on the energy dependence on interhole distance for
trions and biexciton, respectively. The dependences of trion and biex-
citon energies on interhole distance for CdSe/CdS are different
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compared to CdSe/ZnS due to the smaller confinement potentials and
have similarity to that for ZnO/ZnMgO NW.

The results of our calculations demonstrate an appreciable depen-
dence of the exciton, trion and biexciton binding energy on the radius
of NW. In Fig. 4 are presented dependence of the binding energies of the
exciton, trion and biexciton in ZnO/ZnMgO, CdSe/ZnS and CdSe/CdS
on the radius of NW. We perform calculations for the lateral

confinement potentials Ue
0 and Uh

0 for a conduction and valence band
offset between core and shell materials presented in Table 1. The
comparison of the binding energies for the exciton, trion and biexciton
shows that for the same hole to electron mass ratio the binding energy
of biexciton is larger than for the trion and smaller than for the exciton
in all NWs. Moreover, for the same input parameters the exciton and
biexciton have the maximum binding energy in ZnO/ZnMgO for the

Fig. 2. The dependence of trion energy in ZnO/ZnMgO and CdSe/ZnS NWs on interhole distance for different radii of a NW. The thickness of the surrounding
dielectric shell is b=2nm.

Fig. 3. The dependence of biexciton energy in ZnO/ZnMgO and CdSe/ZnS NWs on interhole distance for different radii of a NW. The thickness of the surrounding
dielectric shell is b=2nm.

Fig. 4. Dependence of the binding energies of excitonic complexes on the radius of a nanowire in ZnO/ZnMgO (°) (a), CdSe/ZnS (■) and CdSe/CdS (□) (b) NWs,
respectively, The thickness of the surrounding dielectric shell is b=2nm.
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same radius a=1.5 nm, while the maximum for the binding energy of
the trion is shifted and occurs for the radius of the NW a=2nm. In
CdSe/CdS for the set of the lateral confinement potentials =U 0.30e

0

meV andUh
0 =0.44meV the maximum of the binding energies for these

excitonic complexes are pronounced at a=2.0 nm for the exciton and
biexciton, while the trion has the maximum binding energy for about
80% larger radius. The increase of the confinement potentials in CdSe/
ZnS qualitatively and quantitatively changes the binding energy of the
excitonic complexes: i) the binding energies of excitonic complexes are
increased; ii) they are bound for a smaller NW radius, a=1.0 nm; iii)
while the biexciton binding energy is monotonically decreases, the
maximum of binding energy for the exciton and trion occurs at the radii
of NW a=1.5 nm. Our calculations show that the biexciton binding
energy exceeds that for the trion rather significantly at a small NWs
radius (a=1.5 nm in ZnO/ZnMgO and CdSe/CdS, and a=1.0 nm in
CdSe/ZnS) and with the increase of the radius the difference between
binding energies decreases. Moreover, in both CdSe/ZnS and CdSe/CdS
NWs the biexciton-to-trion binding energy ratio is greater than unity,
decreasing with the NW radius increase. The same tendency one can
observe for in ZnO/ZnMgO NW when the radius a ≥ 1.5 nm.

Now let us present, discuss and compare the results for the binding
energies of the exciton, trion and biexciton. In Fig. 5a the single exciton
binding energies in ZnO/ZnMgO and CdSe/ZnS calculated by means of
Eqs. (16) and (14) are presented. The binding energy varies between
56.3 and 75.3meV when the NW radius varies between 1.0 and 3.5 nm,
and has maximum at about 1.5 nm NW radius and at a=3.5 nm the
exciton binding energy drops to that of bulk materials. The same be-
havior of exciton binding energy is observed for ZnO/ZnMgO quantum
wells [100], with maximum at about 2 nm QW width. The dependence

of trion binding energy on the NW radius is depicted in Fig. 5b. The
maximum of the binding energy 12.8meV is obtained for the NW radius
a=2.0 nm. With the further decrease of wire radius the binding energy
sharply drops. With increasing of the wire radius from 2.0 nm to 3.5 nm
the binding energy decreases again. Let us mention that the maximum
of a binding energy for biexcitons occurs for the smaller radius of NWs
than for trions for all considered materials.

The dependences of the binding energy of biexciton in ZnO/ZnMgO
and CdSe/ZnS on the NW radius is plotted in Fig. 5c. The biexciton has
the maximum binding energy about 21meV for the wire radius
a=1.5 nm. Interestingly, in Ref. [56] biexcitons were investigated in
the ZnO/ZnMgO multiple quantum wells. Experimentally determined
binding energies for biexcitons vary between 17.5 and 30.9meV de-
pending on the width of quantum well and the maximum value was
obtained for 2 nm width and binding energy drops to that of bulk ma-
terials. Interestingly enough, our results are in qualitative agreement
with the earlier predictions in Ref. [41] that the trion and biexciton
binding energies decrease as the diameter quasi-1D systems increases
beyond the 1 nm range. However, for a core/shell wire when the radius
of the core becomes smaller, the penetration range of the electron-hole
wave function into the barrier (shell region) increases, and due to de-
localization their bonding becomes weaker. As stated above, the ef-
fective mass of the electron is considerably lower than that for the hole,
which is why the electronic component of the wave function sig-
nificantly leaks into the shell region, while the heavy hole mainly stays
within the core. The latter results in the decrease of the binding energy
of excitonic complexes in core/shell nanowires, which is illustrated by
our calculations presented in Figs. 4 and 5.

We also study the influence of the thickness of dielectric shell on the

Fig. 5. Comparison of the dependence of the binding energies of the exciton (a), trion (b) and biexciton (c) in ZnO/ZnMgO (°) and CdSe/ZnS (■) NWs on radius of a
NW. The thickness of the surrounding dielectric shell is b=2nm.

Fig. 6. Dependence of the exciton, trion and biexciton binding energy in ZnO/ZnMgO (a) and CdSe/ZnS (b) on the thickness of the surrounding dielectric shell.

R.Y. Kezerashvili et al. Physica E: Low-dimensional Systems and Nanostructures 109 (2019) 228–241

235



binding energy of excitonic complexes. In Fig. 6 are presented the de-
pendence of the binding energy of the exciton, trion and biexciton
binding energy on the thickness of the surrounding dielectric shell in
ZnO/ZnMgO and CdSe/ZnS. We have calculated the binding energy as a
function of barrier width b for the exciton, trion and biexciton in ZnO/
ZnMgO and CdSe/ZnS NWs. One can conclude that in the case of CdSe/

ZnS NW all excitonic complexes remain stable with the increase of di-
electric shell thickness, while in ZnO/ZnMgO NW biexcitons become
unstable when the surrounding dielectric shell exceeds 2 nm. The trion
remains stable for the thickness of the dielectric shell b < 2.5 nm. The
stability of excitonic complexes in CdSe/ZnS NW can be explained by
the high lateral confinement potentials for the electron and hole. The

Fig. 7. The dependence of the trion and biexciton energies on the interhole separation for NWs of 1.0–3.5 nm radius. The notations X+ and XX indicate bounding
states energy for the trion and biexciton, respectively, while +X * and XX* represents trions and biexciton antibonding states. R* indicates the interhole distance of the
crossing of the biexciton antibonding state energy curve with the trion bonding state energy curve. Results for ZnO/ZnMgO NW.
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relatively low potential barriers for the lateral confinement of electrons
and holes in ZnO/ZnMgO NW allow the penetration of the corre-
sponding electronic wave functions in the surrounding dielectric shell
area which leads to the strong decrease of the binding energies of the
exciton and biexciton when b > 2nm. Our calculations demonstrate

that the size of the core of the NW has stronger influence on the binding
energy of trions and biexcitons compared to the thickness of interfacial
alloying. Let us mention that observation for CdSe/CdS [57] suggested
that the size of the surrounding shell has equal or less influence on
Auger suppression compared to the radius of the core of NW.

Fig. 8. The dependence of the trion and biexciton energies on the interhole separation for NWs of 1.0–3.5 nm radius. The notations X+ and XX indicate bounding
states energy for the trion and biexciton, respectively, while +X * and XX* represents trions and biexciton antibonding states. R* indicates the interhole distance of the
crossing of the biexciton antibonding state energy curve with the trion bonding state energy curve. Results for CdSe/ZnS NW.
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Our calculations show a radius dependence of characteristics of
excitons, trions and biexcitons and enhancement of their binding with
size reduction as expected in nanostructures. Our calculations show
that the binding energy of trions are smaller that the binding energy of
biexcitons. One can consider the mechanism of formation of a trion as a
dissociation of a biexciton into a trion bonding state and an electron. To
verify this hypothesis let us to rearrange the data for bonding and un-
tibonding states given in Figs. 2 and 3 as presented in Figs. 7 and 8,
where are indicated crossings of bonding and untibonding states energy
curves. In Fig. 7 biexciton and trion energies for the same radius of wire
are depicted in the same figure to investigate associative ionization (AI)
[101], the process in which two excitons interact to produce a free
electron and a bound trion. With the radius reduction quantitative
change of energy level alignment is observed as one can see in Fig. 7.
Indeed, a biexciton in the antibonding state can dissociate into a trion
bonding state and an electron. When two excitons approach one an-
other along Born-Oppenheimer potential energy curve E(R) the ioni-
zation occurs only after this reactant pair enters a region of the (E, R)
plane in which the bound initial electronic state becomes embedded in
the continuum associated with the final state, trion-electron. One can
see that for the radii a=1.0 nm, a=1.5 nm, a=2.0 nm and
a=2.5 nm of wire the energy of the antibonding biexciton state
sharply increases and the energy curve crosses the trion bonding state
energy curve at the interhole distance R*. At distances R < R* the
biexciton energy in the antibonding state becomes larger compared to
the trion energy. Therefore, it is possible to transition from the biex-
citon antibonding state to the trion bonding state with release of an
electron - e.a., the associative ionization. During photoexcitation the
antibonding states of biexciton are created at different interhole dis-
tances R. Such states will survive if holes go away from each other on
the distance larger than R* before AI, and then stabilize (dissociate).
Quantitatively the probability of surviving can be estimated by means
of R*. The larger R*, the smaller the probability would be. Fig. 7 shows
that the probability should drop with the NW size reduction. In Fig. 8
are presented the crossings of energy curves for the biexciton in the
antibonding states and trion in the bonding states energies for the same
radii for CdSe/ZnS NW. These results also demonstrate a possible
transition from the biexciton antibonding state to the trion bonding
state with release of an electron at some particular interhole distances
R*.

Taking into account the behavior of the biexciton binding energy
with the NW size variation, we can propose that there exists an optimal
radius of elongated ZnO/ZnMgO quantum wire, for which biexciton
binding energy is still larger than the bulk value, whilst associative
ionization into trion state (which in its turn has strong tendency to the
Auger decay) is weakened. This radius ranges between 1.5 and 2.0 nm.
At the same time for the elongated CdSe/ZnS quantum wire this range

is 2.0–2.5 nm due to the stronger lateral confinement.

4. Conclusions

In summary, we presented the theoretical description of the trion
and biexciton in a NW in the framework of the effective-mass model
using Born-Oppenheimer approximation and considered both the lat-
eral confinement and the localization potential. The analytical expres-
sions for the binding energy and wavefunctions are obtained and ex-
pressed by means of matrix elements of the effective one-dimensional
cusp-type Coulomb potentials which parameters are determined self-
consistently by employing the same eigenfunctions of the confined
electron and hole states. We investigated biexcitons and trions in ZnO/
ZnMgO, CdSe/ZnS and CdSe/CdS quantum NWs of a cylindrical shape
and study the dependence of their binding energies on the radius of the
NW. It is found that for the same input parameters the biexciton binding
energy in NWs is always larger than binding energy of the trion. For the
same input parameters the exciton, trion and biexciton have the max-
imum binding energy for the same radius of ZnO/ZnMgO NW, (while
the trion has the maximum binding energy for about 70% larger radius
of a NW.) We found an appreciable dependence of the trion binding
energy on the radius of the quantum wire. In CdSe/CdS and ZnO/
ZnMgO quantum NWs trions appear to have maximum binding energy
for 1.5 nm and 2.0 nm, respectively. It was revealed that a radius re-
duction down to 1.5 nm enhances binding energy of the exciton, trion
and biexciton in ZnO/ZnMgO NW, while for the biexciton in CdSe/CdS
quantum NW the maximum binding energy is obtained for the thinner
NW with 1 nm radius. For very thin NWs binding energies of excitonic
complexes decrease. The excitonic complexes remain stable in CdSe/
ZnS NW with the increase of the dielectric shell, while in ZnO/ZnMgO
NW the trion and biexciton become unstable when the surrounding
dielectric shell exceeds 2.5 nm and 2 nm, respectively. We suggest the
mechanism of formation of the trion via associative ionization of a
biexciton. As for probability of the associative ionization of biexciton
into vulnerable to Auger decay trion states, it continually decreases
with increasing the radius of NW. This leads us to the conclusion that
1–2 nm radius of NW should be optimal for optoelectronic application
at high excitation intensity.
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Appendix A. Effective interactions

The effective electron-hole, hole-hole and electron-electron interactions that are defined as
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is the Coulomb potential. As a result of averaging of e
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over the electron ψe(ρe, φe) and hole ψh(ρh, φh) wave functions
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in the lateral directions, the effective potentials (A.1) - (A.3) are free from the singularity of the bare Coulomb potential at the origin. The modeling
of the potentials (A.1) - (A.3) with the first order rational function

+
A

z Z( )0
, where z is interparticle distance in z-direction and A and Z0 are fitting

parameters, provides a slight modification of the long-range Coulomb potential by a cusp-type Coulomb potential. The values of the fitting para-
meters A and Z0 depend on a dielectric constant ɛ of a NWmaterial, a NW core radius a and a shell thickness b. As an example of the fitting procedure
Fig. 9a illustrates the fitted

+
A

z z Z| |
hh

h h hh1 2 0
1D potential in the case of hole-hole interaction. The calculation is performed for a ZnO/ZnMgO nanowire of

radius a=1.5 nm and shell thickness b=2nm. To find the values of the best fitting parameters Ahh and Z0hh we use the χ2 distribution, which is a
commonly used probability distribution for hypothesis testing. The consideration of different materials leads to changes in the values of the fitting
parameters, but the functional dependences, of course, remains the same. This procedure is used for the parametrization of the potentials (A.1) -
(A.3) for each NW. In our particular case related to the ZnO/ZnMgO, CdSe/ZnS and CdSe/CdS quantum NWs the dependence of the fitting para-
meters A and Z0 on the NW radius are presented in Fig. 9b and c. From Fig. 9b one can conclude that the fitting parameters Aee, Aeh and Ahh that
indicate the strength of the cusp-type Coulomb electron-electron, and hole-hole interactions converge with the increase of NW radius. The fitting
parameters Z0ee, Z0eh and Z0hh presented in Fig. 9c display the linear dependence on NW radius. The slops of these dependences are almost the same
for the same NW, but there are the significant differences for the slopes for ZnO/ZnMgO, CdSe/ZnS and CdSe/CdS NW. The variation of Z0ee, Z0eh and
Z0hh parameters with a nanowire radius in ZnO/ZnMgO, CdSe/ZnS and CdSe/CdS NW can be explained the following way: these parameters are
obtained by means of averaging of 3D Coulomb potential with radial wave functions, which describe the lateral confinement of electrons and holes.
After averaging procedure Coulomb potentials depend only on the distance between carriers. Z0 should be a measure of their average lateral
separation. Now it is obvious that Z0 must increase i) when barrier is decreased and/or ii) when carrier effective masses are reduced.

Fig. 9. The dependence of the effective potential V z z( )hh
eff

h h1 2 on the interhole separation. Open circles - the numerical value of the 1D potential obtained from Eq.
(A.2), solid curve - results from the equation = +Vhh

eff Ahh
z h z h Z hh| 1 2 | 0

with the best fitting parameters (a). Dependence of the fitting parameters Aee, Aeh and Ahh (b) and
Z0ee, Z0eh and Z0hh (c) on the core radius for ZnO/ZnMgO, CdSe/ZnS and CdSe/CdS NWs. The shell thickness b=2nm. Dotted curves - for electron-electron
interaction; solid curves - for electron-hole interaction; dashed curves - for hole-hole interaction.

Appendix B. Matrix elements for J and K

The value for J and K are given by the following matrix elements

= =+ + +J | | | | ,X
A

z R Z X X
A

z R Z X| / 2| | / 2|
eh

eh
eh

eh1 0 1 2 0 2 (B.4)

= =+ + +K | | | | .X
A

z R Z X X
A

z R Z X| / 2| | / 2|
eh

eh
eh

eh2 0 1 1 0 2 (B.5)

The matrix elements (B.4) can be treated as the total energy of the cusp-type Coulomb interaction between the hole located at z=−R∕2 with the
electron density e | |X

2
1 or the hole located at z= R∕2 with the electron density e | | .X

2
2 Numerically, these two matrix elements are equal to one

another. The matrix elements (B.5) correspond to the energy of the cusp-type Coulomb interaction of the overlap charge density e | |X X1 2 localized
around the hole located at z=−R∕2 with the hole. By symmetry, the energy of interaction of the overlap charge density with the hole located at
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z= R∕2 has the same value. The matrix elements J and K both depend on the interhole separation R and are calculated for each fixed value of
interhole distance.

Appendix C. Matrix elements for J and K

For the biexciton, the values for J and K are the same as for the trion and are given by (B.4) and (B.5), while J and K are the matrix elements as
defined below

J = +z z z z( ) ( ) ( ) ( ) ,X X
A

z Z X X1 1 2 2
ee

ee1 1 12 0 2 2 (C.6)

K = +z z z z( ) ( ) ( ) ( ) .X X
A

z Z X X1 2 2 1
ee

ee1 2 12 0 1 2 (C.7)

The matrix element J is the repulsion energy of the charge density e z| ( )|X 1
2

1 of electron 1 localized around the hole located at z= R∕2 with the
charge density e z| ( )|X 1

2
1 of electron 2 localized around the hole located at z=−R∕2, when the repulsion occurs via the cusp-type Coulomb

interaction. The matrix element K presents the repulsion energy between the electrons due to the cusp-type Coulomb interaction, which is connected
with the correlation in the motion of the electrons arising from the antisymmetrization of the wavefunctions in accordance with the Pauli principle.
The matrix elements J and K are functions of the distance R between the holes.

Once the value of J and K, and J and K are known one can find the value of Q and P as

J K= + + = + +Q E J P SE SK2 , 2hh hh (C.8)

and obtain the biexciton energy as a function of the interhole distance R using Eqs. (26) and (27).
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